
Drupal @ scale @ dropsolid

Tales from a building a Drupal-centric platform

Linguistics addendum

Dramatis personae

Manuel Gomes helps people and
systems work better together.

Has been a techie since the 20th century

Tells dad jokes (sometimes on purpose)

Is a product engineer at…

Dropsolid aims to make the best
digital experiences accessible to
everyone.

Driven by an open culture and with a
passion for open source, we share our
knowledge, our code, and our talent
with our clients and communities.

DXP: Digital eXperience Platform

Build, manage, deploy, and
continually optimize digital
experiences for all users
across all channels, such as
websites, emails, mobile apps,
chat, etc.

CONTENT
MANAGEMEN

T

MARKETING
AUTOMATION

CUSTOMER
DATA PLATFORM

 &
PERSONALIZATI

ON

Dropsolid Experience Cloud

● All Open Source
● Complete data sovereignty
● Security (ISO27001) and

Privacy (GDPR) built-in
● Community Native

Currently

> 500 clients running > 550 production projects
which under the hood means

~ 1400 environments running on ~ 200 servers

… you don’t want to manage that manually

So we built a platform

Today we’ll be talking about language

Nouns Verbs

Truth

Truth the way

custom entities for nouns: projects, environments, servers,
memberships, organisations, users, CDP, …

ACLs for memberships: Gitlab, OAuth2 Proxy, others

And state… but more on that later

Action!

It makes sense!

until…

Drupal is not an
application
platform

Awesome CMS, but… not a high
concurrency application building
platform

● High revision overhead
● Bad blob handling

…lead to deadlocks

🔥 🔥

We defended with
smarter queueing

Celery on top of RabbitMQ

Retries with smart backoff
Reliable interim state store

at-least-once delivery

While Ansible took
care of most
platform verbs

… yeah, we did it again! When all
you have is a hammer… Wait,

WHAT?!

So let’s talk about

Brilliant at “its thing”:

Creating, provisioning, configuring servers

Broad Ecosystem

Flexible, extensible

… perhaps a little too much?

Some more Ansible

Great at (re)writing configuration files

creating, starting, stopping, restarting services

BUT

It has no notion of its own concurrency

It doesn’t really know “rollback”

Atomic writes are… as good as you make them

Too much Ansible!

It is not a programming language

It is not an application framework

It can run applications made in frameworks of
programming languages

But boundaries and separation of
concerns become extra hard

That’s a lot of orchestration!

It’s very hard to keep track of it all

State machines to the rescue!

Deterministic success/failure

If something crashes, you know exactly what
and where

You can resume a workflow

Enables atomic “revert” options

We now have vocabulary, and a reliable grammar

With it, we can build meaningful sentences with which we articulate value

These sentences should be

Many other things had to be
handled differently as well!

For our customers’ benefit, for our platform’s
performance, cost, security... and our own
sanity

Backups

€€€ disk usage, difficult retention, too
effort-intensive to operate and service -
something had to give

Restic
Backups done right!

It’s awesomely simple

● Establish a repo on: disk, NFS, MinIO, S3, GCS, Ceph…
● Define the source, plus any exclusions
● First run compresses and backs up everything
● Ensuing runs detect differences, compress and store the delta (versioned!)
● Restore snapshots fully, or paths within them, or mount them as FUSE file

systems
● Take an early day - it Just Works!

Logging

Shall we not have world+dog
sshing into our servers to do
tail -f? Or doing clunky scps?

Logging stack

Promtail An agent on each host that crawls logs and ships to Loki in real time

Loki A log database using object store (TSDB) as a backend

Grafana A front end providing (embeddable) views over Loki logs

A match made in
… Asgard?

And as the growth continues…

Everything breaks at a scale

As a general rule, the greater the scale, the greater the necessary
level of abstraction

Many of our abstractions get leakier as we scale up

… but we shouldn’t get ahead of common sense for our scale point

How you start is often not as you finish. And that’s OK

It’s an iterative
process

St
ru
gg

le

Scale

Solve

Refactor !

ssh
shell scripts
puppet
ansible
drupal app
docker
RabbitMQ
Celery
… kubernetes?

Tending your abstractions for fun sanity and profit

We’ve talked about some unusual stuff for a tech conference

● Vocabulary
● Grammar
● Sentences

Maybe it rings a few bells…

As a <persona> I want to <action> so that <outcome>
Behaviour Driven Design scenarios, like in behat
Domain Driven Design’s ubiquitous language

… coincidence?

This one simple trick (product managers hate it) !

Corollaries:

● A good platform makes writing frequent customer sentences easy
● If what you’re writing is both necessary and customer-nonsensical, you’re

writing plumbing, not platform. “drivers”, not “userland”.

If your “platform sentence” sounds like something your
customers say, you might be on the right track

Why is that relevant?

Call it Decoupling and Alignment.

Good abstractions, good sentences, allow us to maintain and
evolve our value delivery to our customers, while swapping out
implementation and supporting infrastructure in whatever way
necessary.

So let’s talk about kubernetes

And let’s talk about Nouns
Most nouns would do well… as Custom
Resource Definitions…

… and we can let the Kubernetes API
take care of the CRUD bits…

So let’s keep talking about kubernetes

And let’s talk about Verbs

CRDs are fine, but what do do
with them? The API only knows
definitions, and we have many
nouns to orchestrate!

Maybe we can learn from past experience

Remember the whole rant “Ansible is
not a programming language or an
application framework”?

Perhaps it’s time to admit to ourselves
that we do need an application to
implement our grammar!

Yes, really!

Kubernetes gives us operators

Domain-specific controllers that
extends the Kubernetes API to
manage and automate tasks based on
the specific needs of the software they
manage. They encapsulate
operational knowledge into software
that can be shared and reused.

Observe

You can build them with

And unavoidably

Or maybe skip the whole Kubernetes
silliness…

and go full serverless!

It won’t matter
… as long as we’re speaking the

right language!

I HAVE SPOKEN

Thank you! Questions?

hopefully the right language..

	Slide 1
	Dramatis personae
	DXP: Digital eXperience Platform
	Dropsolid Experience Cloud
	Currently
	So we built a platform
	Today we’ll be talking about language
	Truth
	Action!
	It makes sense! until…
	Drupal is not an application platform
	We defended with smarter queueing
	While Ansible took care of most platform verbs
	So let’s talk about
	Some more Ansible
	Too much Ansible!
	That’s a lot of orchestration!
	It’s very hard to keep track of it all
	We now have vocabulary, and a reliable grammar
	Many other things had to be handled differently as well!
	Backups
	It’s awesomely simple
	Logging
	Logging stack
	A match made in … Asgard?
	And as the growth continues…
	Everything breaks at a scale
	It’s an iterative process
	Tending your abstractions for fun sanity and profit
	Maybe it rings a few bells…
	This one simple trick (product managers hate it) !
	Why is that relevant?
	So let’s talk about kubernetes
	So let’s keep talking about kubernetes
	Maybe we can learn from past experience
	Yes, really!
	Kubernetes gives us operators
	You can build them with
	And unavoidably
	Or maybe skip the whole Kubernetes silliness…
	It won’t matter
	Slide 42

